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Introduction

Prostate cancer is the most common non-dermatcleogic cancer in
the United States [1l]. It can potentially arise from altered genes
in multiple information pathways and followed by a sequential
process of mutation along with the progression of the cancer.
Therefore, prostate cancer can be taken as a variety of distinct
diseases, each of which results from some kind of perturbation of a
different information pathway. For example, LNCaP cells are
androgen responsive that harbor a functicnal androgen receptor,
while CL-1 cells are androgen-independent that survive an extended
period of androgen deprivation [2].

Androgens are steroid hormones, synthesized in the Leydig cells
in testis. By binding and activating the androgen receptor (AR)
protein, androgens exert their effects in vivo in the development,
differentiation, and function of male reproductive and accessory
sex tissues such as prostate. Once androgens enter the cell and
bind to AR, it undergoes a conformation change in its ligand-
binding domain, and causes the dissociation of geveral accessory
proteins. Then the DNA binding domain of the AR can bind to a
specific sequence called the androgen responsive element (ARE)
which appears in promoter area cof many genes with important
function in maintaining the male phenotype. This binding of AR
dimmer to ARE induces transcriptional activities of those androgen
responsive genes. Some of these ARE-containing genes are also
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transcriptional factors, like NKX3.1 [3].

The goal of this project is to understand the transcriptional
program behind the prostate cancer and thus provide a logical
framework of finding novel target genes for developing therapies
for prostate cancer. To date, about 20 genes have been confirmed to
be transcriptionally regulated by AR through AREs. Although
presence of ARE-like sequence near or in a gene does not
necessarily imply that it is regulated by AR in wvivo, such
sequences, particularly when found in regulatory region of a gene,
can guide an experimental test of its functional relationship to AR.
The consensus ARE is a palindrome, two 6bp (5'-TGTTCT-3') inverted
sites separated by a 3bp spacer. Recently, some AR specific-
regulated genes are found to have a head-to-tail combination of the
hexamer sites, and the right half of the direct repeat is more
conserved than the left half. On the other hands, the molecular
pathways accounting for androgen regulation remain incompletely
characterized. It seems rational to set up a model of the androgen
response program involving combinations and interactions between
multiple known and unknown pathways. We hypothesize that genes and
proteins associated with key nodes within and between special
pathways in androgen sensitive and independent cells have
substantial potential as therapeutic targets for prostate cancer.

Key Research Accomplishments

1) Comprehensive datasets from our experiments are integrated into
robust relational databases, as hosted and shown in SBEAMS
(http://db.systemsbiology.net/sbeams/) and LYNX Signome Browser
(https://sgb.lynxgen.com/sgb/sgb/)} .

2) Position weighted matrices (PWM) are generated for the androgen
responsive element (ARE) based on known AREs in human genome,
which is important for identifying genes with AREs and/or other
known TFBSs involved in androgen response program;

3) A set of putative AREs are screened by using Mogul on 5k
upstream region of each gene which is significantly up-regulated
according to our MPSS (massively parallel signature sequencing)
and ICAT (isctope-coded affinity tags) experimental data;

4) Androgen receptor (AR) pathways are reconstructed based on the
data from our experiments and other public data resources, such
as the TRANSFAC database and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway database. These pathways are visualized by
using both Cytoscape and BioTapestry tools, providing an
approach to identify possible genes and proteins which are
associated with key nodes within and between special pathways in
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5)

6)

7)

androgen sensitive and independent cells and thus are
substantial potential as therapeutic targets for prostate cancer;

Comprehensive datasets from our experiments are integrated into
a robust relational database, which is also hosted in SBEAMS
(http://db.systemsbiology.net/ sbeams/) and LYNX Signome Browser
(https://sgb.lynxgen.com/sgb/sgb/) for shared access;

49 tissue-specific MPSS datasets are integrated to analyze
tissue-specificity, and various tissue-specific genes are
identified in terms of Unigene Cluster ID, including those for
prostate, ovary, liver and mammary gland. Tissue-specificity is
also analyzed by homolog comparison of human with mouse, based
on public mouse MPSS data sources;

Secretory prediction, digested peptides, and N-glycosylation
sites are calculated for all human Refseq proteins, which is
useful for further data analysis and experiment;

Some potential biomarkers are identified for further evaluation
and validation. This might potentially improve the prediction
and diagnoses of prostate cancer;

9) A windows version of stand-alone siRNA designer is programmed

and tested. This program can be used to scan the length of the
target gene for candidate siRNAs that satisfy the user-specified
rules. For each siRNA candidate, a set of deltaG values and
score is calculated. Top siRNA candidates are then selected for
Blast. Blast files are parsed and blast summary is reported in a
summary file along with siRNA candidate hybrid Melting
Temperature. NCBI-Blasgt, WU-Blast and/or Fasta searches can be
chosen as blast methods for siRNA candidates.

Reportable Outcomes

Model for disease-perturbed network is set up. Algorithms are

designed and implemented to calculate perturbation networks between
two stages of prostate cancer progression. Gene information from
314 BioCarta pathways and 155 KEGG pathways is extracted. 37
BioCarta and 14 KEGG pathways are identified up-regulated, and 23
BioCarta and 22 KEGG pathways are found down-regulated, in LNCaP
cells versus CLl cells, based on MPSS data. This is a significant
step to understanding prostate cancer progression by means of
systems approach.

Conclusions




The systems biclogy provides a new powerful approach to
identifying AR pathways. These pathways are interesting for studies
on prostate cancer because the disease process should be reflected
in disease-perturbed protein and gene regulatory networks [4].

Abbreviations

AR Androgen Receptor

ARE Androgen Receptor Element

ICAT isotope-Coded Affinity Tags

MPSS Massively Parallel Signature Sequencing
PWM Position Weighted Matrix

SBEAMS Systems Biology Experiment Analysis System
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Abstract

Prostate cancer is initially responsive to androgen ablation
therapy and progresses to androgen-unresponsive states that
are refractory to treatment. The mechanism of this transition is
unknown. A systems approach to disease begins with the
quantitative delineation of the informational elements (mRNAs
and proteins) in various disease states. We employed two
recently developed high-throughput technologies, massively
parallel signature sequencing (MPSS) and isotope-coded
affinity tag, to gain a comprehensive picture of the changes in
mRNA levels and more restricted analysis of protein levels,
respectively, during the transition from androgen-dependent
LNCaP (model for early-stage prostate cancer) to androgen-
independent CL1 cells {model for late-stage prostate cancer).
We sequenced >5 million MPSS signatures, obtained >142,000
tandem mass spectra, and built comprehensive MPSS and
proteomic databases. The integrated mRNA and protein
expression data revealed underlying functional differences
between androgen-dependent and androgen-independent
prostate cancer cells. The high sensitivity of MPSS enabled us
to identify virtually all of the expressed transcripts and to
quantify the changes in gene expression between these two cell
states, including functionally important low-abundance
mRNAs, such as those encoding transcription factors and
signal transduction molecules. These data enable us to map the
differences onto extant physiologic networks, creating pertur-
bation networks that reflect prostate cancer progression. We
found 37 BioCarta and 14 Kyoto Encyclopedia of Genes and
Genomes pathways that are up-regulated and 23 BioCarta and
22 Kyoto Encyclopedia of Genes and Genomes pathways that
are down-regulated in LNCaP cells versus CL1 cells. Our efforts
represent a significant step toward a systems approach to
understanding prostate cancer progression. {Cancer Res 2005;
65(8): 3081-91)

Introduction

Prostate cancer is the most common nondermatologic cancer in
the United States {1). Initially, its growth is androgen dependent:
carly-stage therapies, including chemical and surgical castration,

Note: Supplementary data for this article are available at Cancer Research Online
(http:/ cancerres.aucrjournals.org/).

Requests for reprints: Binoyang Lin, Institute for Systems Biology, 1441 North
3dth Street. Seattle, WA 98103, Phone: 206-732-1297: Fax: 206-732-1299%; E-mail:
blingrsystemsbiology.org.
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kill cancerous cells by androgen deprivation. Although such
therapies produce tumor regression, they eventually fail because
most prostate carcinomas become androgen independent (2). To
improve the efficacy of prostate cancer therapy, it is necessary to
understand the molecular mechanisms underlying the transition
from androgen dependence to androgen independence.

The transition from androgen-dependent to androgen-inde-
pendent status likely results from multiple processes, including
activation of oncogenes, inactivation of tumor suppressor genes,
and changes in key components of signal transduction pathways
and gene regulatory networks. Systems approaches to biclogy and
disease are predicated on the identification of the elements of the
systems, the delineation of their interactions, and their changes
in distinct disease states. Biological information is of two types:
the digital information of the genome (e.g,, genes and ¢is-control
elements) and environmental cues. Normal protein and gene
regulatory networks may be perturbed by disease, through
genetic and/or environmental perturbations, and understanding
these differences lies at the heart of systems approaches to
disease. Disease-perturbed networks initiate altered responses
that bring about pathologic phenotypes, such as the invasiveness
of cancer cells.

To map network perturbations in cancer initiation and
progression, one must measure changes in expression levels of
virtually all transcripts. Certain low-abundance transcripts, such as
those encoding transcription factors and signal transducers, wield
significant regulatory influences in spite of the fact they may be
present in the cell at very low copy numbers. Differential display (3)
or cDNA microarrays (4, 5) have been used to profile changes in
gene expression during the androgen-dependent to androgen-
independent transition; however, those technologies can identify
only a limited number of more abundant mRNAs, and they miss
many low-abundance mRNAs due to their low detection sensitiv-
ities. Massively parallel signature sequencing (MPSS), a recently
introduced method, allows 20-nucleotide signature sequences to be
determined in parallel for 1,000,000 DNA sequences from an
individual ¢DNA library or cell state (6). The frequency of each
MPSS signature was calculated for each sample and represented in
transcripts per million {tpm). MPSS technology allows identifica-
tion and cataloging of almost all mRNAs, even those with one or a
few transcripts per cell. Differentially expressed genes thus
identified can be mapped onto cellular networks to provide a
systemic understanding of changes in cellular state.

Although transcriptome {mRNA levels) differences are easier to
study than proteome (protein levels) differences, cellular functions
are usually performed by proteins. RNA expression profiling studies
do not address how the encoded proteins function biologicaily, and
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transcript abundance levels do not always correlate with protein
abundance levels (7). We therefore complemented our mRNA
expression profiling with a more limited protein profiling by using
isotope-coded affinity tags (ICAT) coupled with tandem mass
spectrometry (MS/MS; ref. 8).

The LNCaP cell line is a widely used androgen-sensitive model
for early-stage prostate cancer from which androgen-independent
sublines have been generated {4, 5, 9). The cells of one such
variant, CL1, in contrast to their LNCaP progenitors, are highly
tumorigenic and exhibit invasive and metastatic characteristics in
intact and castrated mice {9, 10). Thus, CL1 cells model late-stage
prostate cancer. MPSS and ICAT data extracted from these model
cell lines can be validated by real-time reverse transcription-PCR
(RT-PCR) or Western blot analysis in more relevant biological
models (tumor xenografts) and in tumor biopsies.

We conducted & MPSS analysis of ~5 million signatures for
the androgen-dependent LNCaP cell line and its androgen-
independent derivative CLl. Our database offers the first
comprehensive view of the digital transcriptomes of two states
of prostate cancer cells and allows us to explore the cellular
pathways perturbed during the transition from androgen-
dependent to androgen-independent growth. We additionally
compared protein expression profiles between LNCaP and CLI
cells using ICAT-MS/MS technology. These are the first steps
toward a systems approach to disease through an integrative,
systemic understanding of prostate cancer progression at the
mRNA, protein, and neiwork levels.

Materials and Methods

Massively parallel signature sequencing analysis. LNCaP and CL1
cells were grown as described by Tso et al. (10). MPSS cDNA libraries were
constructed, and individual ¢cDNA sequences were amplified, attached to
individual beads, and sequenced as described elsewhere (6). The resulting
signatures, generally 20 bases long, were annotated using the then most
recently annotated human genome sequence (Human Genome Release
hgl8, released in November 2003) and the human Unigene {Unigene Build
171, released in July 2004) according to a previously published method (11).
We considered only 100% matches between a MPSS signature and a genome
signature. We also excluded those signatures that expressed at <3 tpm in
both LNCal and CLI libraries, as they might not be reliably detected (12).
Additionally, we classified ¢DNA signatures by their positions relative to
polyadenylation signals and polyadenylic acid [poly(A)] tails and by their
orientation relative to the 5°3' orientation of source mRNA. The Z-test
(13, 14) was used to calculate Ps for comparison of gene expression levels
between the cell lines.

Isotope-coded affinity tag analysis. ICAT reagents were purchased
from Applied Biosystems, Inc. (Foster City, CA) Fractionation of cells into
cytosolic, micresomal, and nuclear fractions (15), as well as ICAT labeling,
MS/MS, and data analyses, were done as described by Han et al. (15). In
addition, probability score analysis (16) and Automated Statistical Analysis
on Protein Ratio (17) were used to assess the quality of MS spectra and to
calculate protein ratios from multiple peptide ratios. Deseriptions of these
software tools ate available at http://regis.systemshiology.net/software. To
compare protein and mRNA expression levels, the Unigene numbers of the
differentially expressed proteins were used to find MPSS signatures and
their expression levels in tpm. If one Unigene had more than one MPSS
signature likely due to alternative terminations, the average tpm of all
signatures was taken.

Real-time reverse transcription-PCR. All primers were designed with
the PRIMER3 program (http://www-genome.wi.mit.edu/cgi-bin/primer/
primer3_www.cgi) and BLAST searched against the human c¢DNA and
expressed sequence tag (EST) database for uniqueness. Primer sequences
and PCR conditions are available on request. Real-time PCR was done on an

ABI 7700 machine (Applied Biosystems), and SYBR Green dye (Molecular
Probes, inc., Eugene, OR) was used as a reporter, PCR conditions were
designed to give bands of the expected size with minimal primer dimer
bands.

Identification of perturbed networks. Genes in the 314 BioCarta and
155 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or
networks (http://cgap.ncinih.gov/Pathways/) were downloaded and com-
pared with the MPSS data using Unigene IDs as identifiers. If a Unigene ID
or an Enzyme Classification number corresponded to multiple signatures
potentially due to multiple alternatively terminated isoforms, the tpm
counts of the isoforms were combined and then subjected to the Z-test
(13, 14). Genes with Ps of <0.00! were considered to be _significantly
differentially expressed. The following criteria were used to identify
pertwrbed networks: a perturbed network must have more than three
genes represented on our differentially expressed gene list {P < 0.001) and at
least 50% of those genes must be up-regulated (an up-regulated pathway) or
down-regulated {a down-regulated pathway).

Prediction of secreted proteins. Proteins with signal peptides {classic
secretory proteins) were predicted using the same criteria described by
Chen et al. (18) with the SignalP 3.0 server {http://www.cbs.dtu.dk/services/
SignalP-3.0/} and the TMHMM20 server. Putatively nonelassic secretory
secreted proteins (without signal peptides) were predicted based on the
SecretomeP 1.0 server {(http://www.chs.dtudk/services/SecretomeP-1.0/}
and required an odds ratio score of >3.0.

Results

Massively parallel signature sequencing analyses of the
androgen-dependent LNCaP cell line and its androgen-
independent variant CL1. Using MPSS technology, we sequenced
2.22 million signature sequences for LNCaP cells and 2.96 million
for CL1 cells. We identified a total of 19,595 unique transcript
signatures expressed at levels >3 tpm in at least one of the samples.
The signatures were classified into three major categories: 1,093
signatures matched repeat sequences, 15541 signatures matched
unique cDNAs or ESTs, and 2,961 signatures had no matches to any
¢DNA or EST sequences (but did match genomic sequences). The
last category inclhuded sequences falling into one of three different
categories: signatures representing new transcripts yet to be
defined, signatures representing polymorphisms in ¢cDNA sequen-
ces (a match of a MPSS sequence to ¢cDNA or EST sequences
requires 100% sequence identity), or errors in the MPSS reads.
Transcript tags with matches to a cDNA or EST sequence were
further classified based on the signatures’ relative orientation to
transcription direction and their position relative to a polyadeny-
lation site and/or poly({A) tail. We also built a searchable MySQL
database (http://www.mysql.com) containing the expression levels
(tpm}, the genomic locations of the MPSS sequences, the cDNAs or
EST matches, and the classification of each signature. A detailed
description of the schema for classification is available in
Supplementary Table S1. A snapshot of a representative data
query is shown in Supplementary Fig. S1.

We first restricted our analysis to those MPSS signatures
corresponding to ¢cDNAs with poly(A) tails and/or polyadenylation
sites, so that corresponding genes could be conclusively identified.
We used the Z-test (13, 14) to compare differential gene expression
between LNCaP and CL1 cells. Using very stringent Ps (<0.001), we
identified 2,088 MPSS signatures (corresponding to 1,987 unique
genes, as some genes have two or more MPSS signatures due to
alternative uses of polyadenylation sites) with significant differen-
tial expression. Of these, 1,011 signatures (965 genes) were
overexpressed in CL1 cells and 1,077 signatures (1,022 genes) were
overexpressed in LNCaP cells {Supplementary Table $2). The Z-
score is related to mRNA abundance in the library. For example,
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using a cutoff P of <0.001 in our data set, the expression level in
tpm changed from 0 to 26 tpm for the most lowly expressed
transcript (>26-fold) but changed from 7,591 and 11,206 tpm for the
most highly expressed transcript (1.48-fold).

We randomly selected nine genes from the 1,987 differentially
expressed genes identified by our MPSS analysis and compared
their changes in expression levels with those obtained by
quantitative real-time RT-PCR techniques. We showed that the
expression levels of these nine genes changed in the same direction
(Table 1). The MPSS expression profiling data were also consistent
with the available published data. For example, using RT-PCR, Patel
et al. (9) showed that CL1 tumors express barely detectable
prostate-specific antigen (PSA) and androgen receptor mRNAs
compared with LNCaP cells. OQur MPSS results indicated that
LNCaP cells expressed 584 tpm of androgen receptor and 841 tpm
of PSA; CL1 cells did not express either androgen receptor or PSA
(0 tpm in both cases). Freedland et al. found that CD10 expression
was lost in CLI cells compared with LNCaP cells (19); likewise, we
found that CD10 was expressed at 0 tpm in CL1 cells but at 56 tpm
in LNCaP cells. Using cDNA microarrays, Vaarala et al (4)
compared LNCaP cells and another androgen-independent variant,
nen-PSA-producing LNCaP line, which is similar to CLI, and
identified a total of 56 differentially expressed genes. We found that
the expression levels of these 56 genes changed in the same
direction (concordant) between LNCaP and CL1 cells and between
LNCaP and non-PSA-producing LNCaP cells (data not shown). This
identification of 1,987 versus 56 differentially expressed genes,
respectively, underscores the striking differences in sensitivity
between MPSS and ¢cDNA microarray techniques.

To compare the sensitivity of the MPSS and ¢cDNA microarray
procedures, we hybridized cDNA microarrays containing 40,000
human cDNAs to the same LNCaP and CL1 RNAs that we used for
MPSS. Three replicate array hybridizations were done. MPSS
signatures and array clone [Ds were mapped to Unigene IDs for
data extraction and comparisons. We found that only those genes
expressed at >40 tpm by MPSS could be reliably detected as
changing levels by cDNA microarray hybridizations [judged by an
expression level twice the SD of the background, a standard cutoff
value for microarray data analysis (data not shown)]. This
observation is consistent with the 33 to 60 tpm sensitivity of
microarrays estimated from the experiment of Hill et al. {20), in

which known concentrations of synthetic transcripts were added.
In LNCaP and CL1 cells, ~68.75% (13,471 of 19,595) of MPSS
signatures (>3 tpm) were expressed at a level below 40 tpmy;
changes in the levels of these genes will be missed by microarray
methods. Many attempts have been made to increase the
sensitivity of DNA array technology (21, 22). We have not compared
these new improvements against MPSS, but it is clear that there
will still be significant differences in the levels of change that can
be detected.

Serial analysis of gene expression (SAGE; ref 23) is another
technology for gene expression profiling; like MPSS, it is digital and
can generate a large number of signature sequences. However,
MPSS (~1 million signatures per sample,) can achieve a much
deeper coverage than SAGE (typically ~ 10,000-100,000 signatures
sequenced per sample) at reasonable cost. We compared our MPSS
data on LNCaP cells against publicly available SAGE data on
LNCaP cells (National Center for Biotechnology Information SAGE
database) through common Unigene IDs. The SAGE library
GSM724 (total SAGE tags sequenced: 22,721; ref. 24) is derived
from LNCaP cells with an inactivated PTEN gene; it is the SAGE
library most similar to our LNCaP cells. Only 400 (~ 20%) of our
1,987 significantly differentially expressed genes (P < 0.001) had any
SAGE tag entry in GSM724. These data illustrate the importance of
deep sequence coverage in identifying state changes in transcripts
expressed at low-abundance levels.

Functional classifications of genes differentially expressed
between LNCaP and CLI cells. Examination of the Gene Ontology
classification of our 1,987 genes revealed that multiple cellular
processes have changed during the transition from LNCaP to CL1
cells. The completed list, including Gene Ontology annotations, is
shown in Supplementary Table $2. The most interesting groups,
categorized by function, are shown in Table 2.

Nineteen differentially expressed proteins are related to
apoptosis. Twelve of these are up-regulated in CL1 cells, including
the apoptosis inhibitors human T-cell leukemia virus type [ binding
protein | and CASP8 and FADD-like apoptosis regulator. Seven are
down-regulated in CL1, including programmed cell death 8 and 5
(apoptosis-inducing factors) and BCL2-like 13 (an apoptosis
facilitator). Because CL1 cells have increased expression of
apoptosis inhibitors and decreased expression of apoptosis
inducers, net inhibition of apoptosis may contribute to their

Table 1. Comparison of MPSS and real-time RT-PCR results
MPSS signature Name Genbank LNCR/LNCX® LNCR/LNCX tpm (LNCR) tpm (LNCX)

accession no. ratio by ratio by MPSS

realtime PCR

GATCTCAGTTGTAAATA TSPAN-3  BCO00704 0.35 0.28 147 521
GATCTCTTTTCAGAAGT ITM3 NM_030926 0.28 0.16 22 140
GATCCCTCCAATAMATA PPP6C AAST4270 0.32 0.00 o 27
GATCACAATAAACGATA PXMP2 NM_018663 0.32 0.14 5 35
GATCAGATTCACGGACC PTPRM NM_002845 11.23 8.87 683 77
GATCAACCTGTGGCTGT GPT2 BCO51364 202 4.03 250 62
GATCACAAAATGTTGCC UGT2B15  NM_001077 0.08 0.05 36 702
GATCACAGAAATGCATA PKIB NM_032471 0.43 011 35 329
GATCCGGGATGGGAGAC AQP3 BMS68943 1.50 3.56 96 27
“LNCR, LNCaP cells stimulated with androgen; LNCX, LNCaP ceils starved of androgen.
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Table 2. Examples of differentially expressed genes and their functional classifications

Signatures LNCaP CLt Description Genbank accession no.
(tpm) (tpm)

Apoptosis related
GATCAAATGTGTGGCCT o 3,609 Lectin, galactoside binding, soluble, 1 (galectin 1) BCOO1693
GATCATAATGTTAACTA 4] 14 Pleiomorphic adenoma gene-like 1 (PLAGLL) NM_002656
GATCATCCAGAGGAGCT 0 16  Caspase-7, apoptosis-related cysteine protease U40281
GATCGCGGTATTAAATC 0 15 Tumor necrosis factor receptor superfamily, member 12 U75380
GATCTCCTGTCCATCAG 0 24 IL-1, B M15330
GATCCCCTTCAAGGACA 1 19 Nudix (nucleoside diphosphate linked moiety X) type motif 1 NM_006024
GATCATTGCCATCACCA 51 278 EST, highly similar to CUL2_human Cullin homologue 2 ALB32733
GATCTGAAAATTCTTGG 16 56 CASP8 and FADD-like apoptosis regulator U97a7s
GATCCACCTTGGCCTCC 49 149 Tumor necrosis factor receptor superfamily, member 10b NM_003842
GATCATGAATGACTGAC 118 257  Cytochrome ¢ BC009582
GATCAAGTCCTTTGTGA 299 102 Programmed cell death 8 (apoptosis-inducing factor) H20713
GATCACCAAAACCTGAT 72 24 BCL2-like 13 (apoptosis facilitator) BMS04887
GATCAATCTGAACTATC 563 146  Apoptosis-related protein APR-3 (APR-3) NM_016085
GATCCCTCTGTACAGGC 83 13 Unc-13-like {Caenorhabditis elegans; UNC13), mRNA NM_006377
GATCTGGTTGAAAATTG 1,006 49 CED-6 protein (CED-6), mRNA NM_016315
GATCTCCCATGTTGGCT 36 4 CASP2 and RIPK1 domain containing adaptor with death domain ~ BC017042
GATCAGAAAATCCCTCT 27 1 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 20, 103 kDa BCO11556
GATCAAGGATGAAAGCT 50 3 Programmed cell death 2 D20426
GATCTGATTATTTACTT 1,227 321 Programmed cell death 5 NM_004708
GATCAAGTCCTITGTIGA 299 102 Programmed cell death 8 (apoptosis-inducing factor) NM_004208

Cyclins
GATCCTGTCAAAATAGT 2 47 MCT-1 protein (MCT-1), mRNA NM_014060
GATCATTATATCATTGG 3 39 Cyclin-dependent kinase inhibitor 2B (CDKN2E) NM_078487
GATCATCAGTCACCGAA 38 396  Cyclin-dependent kinase inhibitor 2A (pi6) BM054921
GATCGGGGGCGTAGCAT 5 43 Cyclin D1 NM_053056
GATCTACTCTGTATGGG 40 144 Cyclin fold protein 1 BG119256
GATCAGCACTCTACCAC 530 258 Cyelin Bl BM973693
GATCTGGTGTAGTATAT 210 77 Cyclin G2 BM984551
GATCAGTACACAATGAA 642 224 Cyclin G1, BCO00196
GATCTCAGTTCTGCGTT 9i8 308 CDK2-associated protein 1 (CDK2AP1), mRNA NM_004642
GATCCTGAGCTCCCTTT 2490 650 Cyelin 1 BCO00420
GATCATGCAGTGACATA 15 1 KIAAL028 protein ALI22055
GATCTGTATGTGATTGG 28 1 Cyclin M3 AAABNTT

Kallikreins
GATCCACACTGAGAGAG 841 0 KLK3 AA523902
GATCCAGAAATAAAGTC 385 1} KLK4 ANMEI5489
GATCCTCCTATGTTGTT 314 0 KLK2 §39329

CD markers
GATCAGAGAAGATGATA 0 810 CD213a2, IL-13 receptor, a2 U70981
GATCCCTAGGTCTTGGG 23 161 CD213al, IL-13 receptor, ol AWS74023
GATCCACATCCTCTACA 0 63 CD33, CD33 antigen {gp67) BC028152
GATCAATAATAATGAGG 0 151 CD44, CD44 antigen ALB32642
GATCCITCAGCCTTCAG 0 35 CD73, 5-nucleotidase, ecto (CD73) Al831695
GATCTGGAACCTCAGCC 1 50 CD49%e, integrin, a5 BCO08786
GATCAGAGATGCACCAC 8 122 CD138, syndecan 1 BM974052
GATCAAAGGTTTAAAGT 38 189 CD166, activated leukocyte cell adhesion molecule ALS33702
GATCAGCTGTTTGTCAT 53 295  CD7l, transferrin receptor {(p90, CD71) BCC01188
GATCGGTGCGTTCTCCT 287 509  CDI107a, lysosomal-associated membrane protein 1 AI521424
GATCTACAAAGGCCATG 161 681 CD29, integrin, 31 NM_002211
GATCATTTATTTTAAGC 56 0 CD10 (neutral endopeptidase, enkephalinase) BQO13520
GATCAGTCTTTATTAAT 150 50  CDL107b, lysosomal-associated membrane protein 2 Al459107
GATCTTGGCTGTATTTA 84 1014 CD59 antigen pl18-20 NM_000611
GATCTTGTGCTGTGCTA 408 234 CD9 antigen (p24) NM_001769

Transcription factors
GATCAAATAACAAGTCT 1] 62  Transcription factor BMAL2 BMB54818
GATCTCTATGTTTACTT 0 27 Transcription factor BMAL2 BG163364
GATCCTGACACATAAGA 12 74 Transcription factor BMAL2 BF055294

{Continued on the following page)
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Table 2: Examples. of differentially expressed genés anc inctional classifications (Contd): - = - -
Signatures LNCaP CL1 Description Genbank accession no.
(tpm) (tprn)
GATCATTTTGTATTAAT 10 61 Transcription factor NRF BC047878
GATCGTCTCATATTTGC 52 0 Transcriptional coactivator tubedown-100 NM_025085
GATCCCCCTCTTICAATG 0 31 Transcriptional coactivator with PDZ-binding motif AJ29943)
GATCAAATGCTATTGCA 1 55 Transcriptional regulator interacting with AL126500
the PHS-bromodomain 2
GATCTGTGACAGCAGCA 140 35 Transducer of ERBB2, 1 BCO31406
GATCAAATCTGTACAGT 239 23 Transducer of ERBB2, 2 AABX4240
Annexins and their ligands
GATCCTGTGCAACAAGA 0 69 Annexin A10 BCCOT320
GATCTGTGGTGGCAATG 41 630 Annexin A1l AL576782
GATCAGAATCATGGTCT 0 1079 Annexin A2 BCOO1388
GATCTCTTTGACTGCTG 210 860 Annexin A5 BC001429
GATCCAAAAACATCCTG 83 241 Annexin A6 AlS66871
GATCAGAAGACTTTAAT 0 695 Annexin Al BCO01275
GATCAGGACACTTAGCA 0 2,949 5100 calcium-binding protein A10 (Annexin II ligand) BCO15973
Matrix metalloproteinase
GATCATCACAGTTTGAG 0 38 MMP 10 (stromelysin 2) BCO02591
GATCCCAGAGAGCAGCT 0 108 MMP 1 (interstitial collagenase) BCO13118
GATCGGCCATCAAGGGA 0 25 MMP 13 (collagenase 3} AI370581
GATCTGGACCAGAGACA 0 10 MMP 2 (gelatinase A) BG332150

greater tumorigenicity. Matrix metalloproteinases (MMP), which
degrade extracellular matrix components that physically impede
cell migration, are implicated in tumor cell growth, invasion, and
metastasis. We found that MMPs 1, 2, 10, and 13 are significantly
overexpressed in CL1 cells (Table 2), which may partially explain
these cells’ aggressive and metastatic behavior.

CD markers are generally localized at the cell surface; some may
be associated with prostate cancer (25). We converted all currently
identified CD markers (CD1-CD247) from the PROW CD index
database (http://www.ncbinlm.nih.gov/prow/guide/45277084.htm)
to Unigene numbers and used these numbers to identify their
signatures and their expression levels. We identified 15 CD
markers that are differentially expressed between LNCaP and
CLI cells (Z-score < 0.00); Table 2). Eleven CD markers, including
CD213a2 and CD213al, which encode interleukin (IL)-13 receptors
ol and o2, are up-regulated in CL1 cells; three CD markers, CD9,
CD10, and CD107, are down-regulated in these cells {Table 2). Six
CD markers went from 0 or 1 to >35 tpm (Table 2), making them
good digital or absolute markers or therapeutic targets. These data
suggest that carefully selected CD markers may be useful in
following the progression of prostate cancer and indeed could
serve as potential targets for antibody-mediated therapies (25).
Additional functional categories can be seen in Supplementary
Table S2.

Delineation of disease-perturbed networks in prostate
cancer cells. Genes and proteins rarely act alone but rather
generally operate in networks of interactions. Identifying key nodes
(proteins) in the disease-perturbed networks may provide insights
into effective drug targets. Comparing the genes (proteins)
currently available in the 314 BioCarta and 155 KEGG pathway
or network (http://cgap.neinih.gov/Pathways/) databases with the
MPSS data through Unigene IDs, we identified 37 BioCarta and 14
KEGG pathways that are up-regulated and 23 BioCarta and 22
KEGG pathways that are down-regulated in LNCaP cells versus CL1
cells (Table 3). The number of genes whose expression patterns

changed in each pathway is listed in Table 3. Each gene along with
its expression level in LNCaP and CL1 cells is listed pathway by
pathway in our database (ftp://ftp.systemsbiology.net/pub/blin/
mpss). Changes in these pathways reveal the underlying phenotypic
differences between LNCaP and CLI cells. For example, multiple
networks involved in modulating cell mobility, adhesion, and
spreading are up-regulated in CL1 cells, which are more metastatic
and invasive than LNCaP cells (Table 3). In the uCalpain and
friends in cell spread pathway, calpains are calcium-dependent
thiol proteases implicated in cytoskeletal rearrangements and cell
migration. During cell migration, calpain cleaves target proteins,
such as talin, ezrin, and paxillin, at the leading edge of the
membrane while at the same time cleaving the cytoplasmic tails of
the integrins 3,(a) and {34(b) to release adhesion attachments at the
trailing membrane edge. Increased activity of calpains increases
migration rates and facilitates cell invasiveness (26).

Many pathways we identified as perturbed in the LNCaP and
CL1 comparison are interconnected to form networks (in fact,
there are probably no discrete pathways, only networks). For
example, the insulin signaling pathway, the signal transduction
through I[L-1 receptor pathway, and nuclear factor-«xB (NF-kB)
signaling pathway are interconnected through ¢-Jun, IL-1 receptor,
and NF-«B. The mapping of genes onto networks/pathways will be
an ongoing objective as more networks/pathways become
available. Our transcriptome data will be an invaluable resource
in delineating these relationships.

As gene regulatory networks controlled by transcription factors
form the top layer of the hierarchy that controls the physiclogic
network, we sought to identify differentially expressed transcrip-
tion factors. Of 554 transcription factors expressed in LNCaP and
CLI cells, 112 showed significantly different levels between the cell
lines (P < 0.001; Supplementary Table S3). This clearly showed
significant difference in the functioning of the corresponding gene
regulatory networks during the progression of prostate cancer from
the early to late stages.
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. Table 3. Pathways that are up-regulated or down-regulated comparing LNCaP cells toClt cells -
Pathways No. gene hits  No. P < 0.001 No. P < 0.001 No. no change
in a pathway  and LNCA > CL1 and LNCA < CL1
Up-regulated pathways in LNCaP cells
BioCarta pathways

Mechanism of gene regulation by peroxisome 35 9 2 24
proliferators via PPARa

T-cell receptor signaling pathway 21 6 2 13

ATM signaling pathway 15 5 2 8

CARM1 and regulation of the estrogen receptor 18 5 2 11

HIV type I Nef negative effector of Fas and 33 5 2 26
tumor necrosis factor

Epidermal growth factor signaling pathway 17 5 1 11

Role of BRCAL BRCAZ, and ATR in cancer susceptibility 16 5 1 10

Tumor necrosis factor receptor I signaling pathway 17 5 1 i1

Toli-like receptor pathway 17 5 1 11

FAS signaling pathway CD95 17 4 I 2

Vascular endothelial growth factor 16 4 I 11
hypoxia and angiogenesis

Bone remodeling 9 3 1 5

Estrogen receptor-associated degradation ERAD pathway 11 3 1 7

Estrogen-responsive protein Efp controls cell cycle 11 3 1 7
and breast tumors growth

Influence of Ras and Rho proteins on G;-§ transition 16 3 1 12

Inhibition of cellular proliferation by Gleevec 3 3 1 9

Mitogen-activated protein kinase inactivation 9 3 1 5
of SMRT corepressor

NF-kB activation by nontypeable Haemophilus influenzae 16 3 i 12

Rb tumor suppressor checkpoint signating in 10 3 1 6
response to DNA damage

Transcription regulation by methyltransferase of CARMI1 10 3 1 &

Ceramide signaling pathway 13 4 0 9

Cystic fibrosis transmembrane conductance regulator 7 4 0 3
and {32-adrenergic receptor pathway

Nerve growth factor pathway 151 4 0 7

Platelet-derived growth factor signaling pathway 16 4 0 12

‘Tumor necrosis factor stress-related signaling 14 4 o 10

Activation of COOH-terminal Srk kinase by cyclic 9 3 0 6

AMP-dependent protein kinase inhibits
signaling through the T-cell receptor

AKAPYS5 role in mitosis and chromosome dynamics i1 3 0 8
Attenuation of GPCR signaling 7 3 4] 4
Chaperones modulate IFN signaling pathway 11 3 0 8
ChREBP regulation by carbohydrates and cyclic AMP 12 3 0 9
Insulin-like growth factor-I signaling pathway 11 3 0 8
Insufin signaling pathway 11 3 0 8
NF-kB signaling pathway 11 3 0 8
Protein kinase A at the centrosome 12 3 0 9
Regulation of ckl cdk5 by type I glutamate receptors 10 3 0 7
Role of mitochondria in apoptatic signaling 10 3 0 7
Signal transduction through IL-1 receptor 14 3 0 11
KEGG pathways
Aminosugar metabolism 24 9 4 il
Androgen and estrogen metabolism 37 13 5 19
Benzoate degradation via hydroxylation 5 3 1 1
C21-Steroid hormone metabolism 4 1 0 3
C5-Branched dibasic acid metabolism 2 2 0 0
Carbazole degradation 1 1 0 0
Terpenoid biosynthesis 6 4 i 1
Chondroitin-heparan sulfate biosynthesis 14 8 3 3
Fatty acid biosynthesis (path 1) 3 2 0 I

(Continued on the following page)

Cancer Res 2005; 65: (8). April 15, 2005 3086 www.aacrjournals.org




twork Analysis of Prostate Cancer Cells

Table 3. Pathways that are up-regulaiedordgwnrggu;afgd

nparing LNCaP cells to CL1 cells (Cont'd)

Pathways No. gene hits  No. P < 0.001 No. P < 0.001 No. no change
in a pathway  and LNCA > CL1  and LNCA < CL1
Fluorene degradation 3 2 0 1
Pentose and glucuronate interconversions 19 9 1 9
Phenylalanine, tyrosine, and tryptophan biosynthesis 10 5 2 3
Porphyrin and chlorophyll metabolism 28 13 3 12
Streptomycin biosynthesis 6 4 1 I
Up-regulated pathways in CLI cells
BioCarta pathways
Rho cell motility signaling pathway 18 2 [ 10
Trefoil factors initiate mucosal healing 14 1 6 7
Integrin signaling pathway 14 1 5 8
Ca* /calmodulin-dependent protein kinase activation 7 1 4 2
Effects of calcineurin in keratinocyte differentiation 9 1 4 4
Angiotensin Il-mediated activation of ¢-Jun 12 L 3 8
NHy-terminal kinase pathway via Pyk2-dependent signaling
Bivactive peptide-induced signaling pathway 16 1 3 2
CBL-mediated ligand-induced down-regulation of 6 i 3 2
epidermal growth factor receptors
Control of skeletal myogenesis by HDAC calcium 12 1 3 8
calmodulin-dependent kinase CaMK
How does Salmonella hijack a ceil 8 1 3 4
Melanocyte development and pigmentation pathway 4 1 3 0
Overview of telomerase protein component gene hTert 7 1 3 3
transcriptional regulation
Regulation of PGC-1a 9 0 4 5
ADP-ribosylation factor 9 0 3 6
Down-regulated of MTA-3 in estrogen 7 0 3 4
receptor-negative breast tumors
Endocytotic role of NDK phosphins and dynamin 7 0 3 4
Mechanism of protein import into the nucleus 7 0 3 4
Nuclear receptors in lipid metabolism and toxicity 7 o 3 4
Pertussis toxin-insensitive CCRS 9 0 3 6
signaling in macrophage
Platelet amyloid precursor protein pathway 5 0 3 2
Role of Ran in mitotic spindle regulation § 0 3 5
Sumoylation by RanBP2 regulates 8 0 3 5
transeriptional repression
uCalpain and friends in cell spread E 0 3 2
KEGG pathways
Arginine and proline metabolism 45 7 16 22
ATP synthesis 31 7 15 9
Biotin metabolism 5 i 3 1
Blood group glycolipid biosynthesis, lactoseries 12 i 6 5
Cyanoamino acid metabolism 5 4] 3 2
Ethylbenzene degradation 9 1 3 5
Ganglioside biosynthesis 16 2 6 8
Globoside metabolism 17 3 8 6
Glutathione metabolism 26 4 10 12
Glycine, serine, and threonine metabolism 32 6 14 12
Glycosphingolipid metabolism 35 6 18 i
Glyeosylphosphatidylinositol-anchor biosynthesis 26 5 12 9
Glyoxylate and dicarboxylate metabolism 9 1 6 2
Huntington's disease 25 4 10 11
Methane metabolism 9 1 3 5
0-Glycans biosynthesis 19 3 8 8
One-carbon pool by folate 12 2 8 2
Oxidative phosphorylation 93 21 45 27
Parkinson’s disease 30 5 14 il
Phospholipid degradation 21 4 12 3
Synthesis and degradation of ketone bodies 7 1 3 3
Urea cycle and metabolism of amino groups 8 2 8 8
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As secreted proteins can readily be exploited for blood cancer
diagnosis and prognosis, we next asked how many of our
differentially expressed genes encode secreted proteins. We
identified 521 signatures belonging to 460 genes potentially
encoding secreted proteins (Supplementary Table S6). Among
these, 287 (259 genes) and 234 (201 genes) signatures, respectively,
are overexpressed or underexpressed in CL1 cells compared with
LNCaP celis. Thus, one can think about using blood diagnostics
(changes in relevant protein concentrations) to follow prostate
cancer progression.

Quantitative proteomic analysis of prostate cancer cells. We
quantitatively profiled the protein expression changes between
LNCaP and CL1 cells using the ICAT-MS/MS protocol described
by Han et al. (15). We generated a total of 142,849 MS/MS, 7,282
of which corresponded to peptides with a mass spectrum
quality score P of >0.9 (allowing unambiguous identification of
peptides; ref. 16). We obtained quantitative peptide ratios for
4,583 peptides corresponding to 940 proteins. The number of
peptides is greater than the number of proteins because (a)
mass spectrometry identified multiple peptides from the same
protein and (&) the ionization step of mass spectrometry
created different charge states for the same peptide. The protein
ratios were calculated from multiple peptide ratios using an
algorithm for the Automated Statistical Analysis on Protein
Ratio (17). In the end, we identified 82 proteins that are down-
vegulated and 108 proteins that are up-regulated by at least 1.8-
fold in LNCaP cells compared with CLI cells. The functional
classification of the proteins identified is shown in Supplemen-
tary Table S4.

Fifty-four percent (103 of 190) of differentially expressed
proteins identified have enzymatic activity. Many of the proteins
identified are involved in fatty acid and lipid metabolism,
including fatty acid synthase, carnitine palmitoyltransferase II,
and propionyl CoA carboxylase « polypeptide. Fatty acid and
lipid metabolism is perturbed in prostate cancer (27, 28).
Additionally, many genes involved in lipid transport were
altered, including five Annexin family proteins, prosaposin, and
fatty acid binding protein 5 (Supplementary Table $4). Annexin
Al was shown to be overexpressed in non-PSA-producing
LNCaP cells compared with PSA-producing LNCaP cells {4).
Annexin A7 is postulated to be a prostate tumor suppressor
gene (29). Annexin A2 expression is reduced or lost in prostate
cancer cells, and its re-expression inhibits prostate cancer cell
migration (30).

Other genes we identified here have been implicated in
carcinogenesis, including tumor suppressor pl6 and insulin-like
growth factor-II receptor (27, 31). Some genes have been
implicated previously in prostate cancer, such as prostate cancer
overexpressed gene 1 (POVI), which is overexpressed in prostate
cancer (32), and §1 and ol catenin (cadherin-associated protein)
and junction plakoglobin, which are down-regulated in prostate
cancer cells (33). However, the potential relationships of most of
the proteins identified here to prostate cancer require further
elucidation. For example, transmembrane protein 4 (TMEM4), a
gene predicted to encode a 182-amino acid type II transmem-
brane protein, is down-regulated ~2-fold in CL1 cells compared
with LNCaP cells. MPSS data also indicated that TMEM4 is
down-regulated ~2-fold in CLi cells. Many type 1 transmem-
brane proteins, such as TMPRSS2, are overexpressed in prostate
cancer patients (34). It will be interesting to see whether
TMEM4 overexpression plays a primary role in prostate

carcinogenesis. We also identified 12 proteins that have not
been annotated or functionally characterized. The relationships
between these novel proteins and prostate cancer also need
further study.

Additionally, we sought to compare the changes in expression at
the protein level in the two cell states with changes at the mRNA
level. We converted the protein IDs and MPSS signatures to
Unigene IDs to compare the MPSS data with the ICAT-MS/MS
data. We limited this comparison to those with common Unigene
IDs and with reliable ICAT ratios {SD <0.5) and ended up with a
subset of 79 proteins. Of these, 66 genes (83.5%) were concordant in
their changes in mRNA and protein levels of expression and 13
genes (16.5%) were discordant (i.e., having higher protein
expression but lower mRNA expression or vice versa). The scatter
plot of protein/mRNA expression ratios is shown in Fig. 1. There
are no functional similarities among the discordant genes. As these
mRNAs and proteins are expressed at relatively high levels,
discordance due to measurement errors is unlikely. Clearly, post-
transcriptional mechanism(s) of protein expression is important,
although the elucidation of the specific mechanism(s) awaits
further studies.

Discussion

The systems approach to disease is predicated on the idea
that the disease process is reflected in disease-perturbed protein
and gene regulatory networks. Molecular systems biology has
two important features: (a) it employs global analyses where
global implies studying changes in transcript or protein levels as
well as the relationships of all of the elements in the system and
(b} it integrates different types of biological information (single
nucleotide polymorphisms, DNA, mRNA, protein, protein inter-
actions, etc.). MPSS is a powerful and sensitive technology that
allows deep analysis of the prostate transcriptome. The MPSS
protocol we used for this study relies on GATC enzymatic sites
to cleave the 3' region of ¢cDNAs to generate DNA fragments as
substrates for MPSS. ¢DNAs lacking GATC in their 3’ region
would be excluded from these analyses. The estimated
percentage of ¢cDNA clones lacking an appropriately positioned
GATC site is ~3% as calculated from the Mammalian Genome
Collection full-length sequences. Among the 15,064 Mammalian
Genome Collection sequences, 14,602 (96.93%) sequences have
appropriate GATC sites. The protocol we used is also biased
toward capturing MPSS signatures within 500 bp 5' of the poly(A)
site. If the GATC site is located beyond 500 bp 5 of the poly(A)
site, it will likely be missed as well. For example, NKX3./, a
prostate-specific and androgen-regulated gene (35, 36), is not
found in our MPSS data set because its GATC site closest to the
poly(A) tail (Genbank accession no. AF247704) is 2.8 kb away.
Recently, a new protocol that eliminates this bias was developed
at Lynx' We estimated that LNCaP cells expressed ~ 280,000
transcripts per cell. We obtained ~900 pg of total RNA from 10°
cells. With an average of 3% polyadenylated RNA and an average
transcript length of 1 kb, this corresponds to 280,000 transcripts
per cell. Therefore, with >2 million signatures obtained for each
cell state by MPSS, we can detect transcripts expressed at levels
of <i transcript per cell {this means that not all cells express the
transcript}.

' D. Zhou, personal communicution.
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Figure 1. Scatter plot of the protein ratios f .
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The BioCarta and KEGG databases describe 469 protein
pathways or networks (http://cgap.nci.nih.gov/Pathways/). We
have identified 37 BioCarta and 14 KEGG pathways that are up-
regulated and 23 BioCarta and 22 KEGG pathways that are down-
regulated in LNCaP cells versus CL1 cells. We have also shown that
112 transcription factors change between these two disease states,
consistent with the fact that several different gene regulatory
networks are perturbed. These changes indicate significant
alterations of the corresponding gene regulatory networks. These
transcription factors include androgen receptor along with other
six transcription factors, such as the ets homologous factor, a liver-
specific bHLH-Zip transcription factor, an IFN regulatory factor,
and CCCTC-binding factor (zinc finger protein; by exploring data
in Supplementary Table $3). The fascinating question is which of
these networks are directly correlated with prostate cancer
progression and which are changed secondarily as a consequence
of their connections to the primary disease networks. We are
working on strategies to distinguish these possibilities. Neverthe-
less, we can firmly conclude that the progression from early-stage
to late-stage prostate cancer as represented by LNCaP and CL1
cells clearly is reflected in significant changes in both protein and
gene regulatory networks.

In contrast to the MPSS technology, the ICAT technology is an
immature technology that cannot now carry out global analyses
(37). The integration of different types of data provides powerful
new approaches to defining more precisely protein and gene
regulatory networks (38). We have shown that the protein and
RNA expression levels of 66 of 79 genes (83.5%) were concordant
(ie. changes in the same direction; Supplementary Table $5).
This concordance rate is higher than that reported elsewhere

(39, 40). Waghray et al. found that only 8 of 25 (32%) androgen-
responsive genes in LNCaP cells showed concordance between
protein levels measured by two-dimensional gels and MS/MS
and mRNA levels analyzed by SAGE (39). Although genes in
different experimental systems may have different concordance
rates between mRNA and protein expression, use of different
methods for quantitative protein profiling (ICAT-MS/MS versus
two-dimensional gel-MS/MS) and mRNA expression profiling
(MPSS versus SAGE) may also account for the differences. It is
alse critical to use only those data with high confidence levels in
the comparisons between mRNA and protein levels. The
expression levels obtained by MPSS are more accurate than
those obtained by SAGE or DNA microarrays because of the
deep sequence coverage MPSS achieves. We have also limited
our data set to only those proteins (649 of them) that were
identified in multiple peptide hits and in which the ICAT ratios
did not vary greatly among different peptides from the same
protein (SD < 0.5). Such variation could derive from experimen-
tal errors or from different protein isoforms. There are a
multiplicity of post-transcriptional mechanisms that have been
described and there are probably more to be identified (41). The
important point is that this major aspect of control could not
have been identified without the integration of two data types—
mRNAs and proteins.

The systems approach provides powerful new approach to
diagnostics. The idea is that disease-perturbed networks change
their patterns of mRNA and protein expression both within the
diseased cells and in terms of the proteins they synthesize that
are secreted into the blood. Of the 1,987 mRNAs that changed in
the transition from LNCaP to CLI cells (early-stage to late-stage
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cancer), 460 (23.2%) encoded proteins that were potentially
secreted (Supplementary Table $6). Sixteen of these putative
secreted proteins were also identified to be differentially
expressed in these two cell states by the ICAT approach
(Supplementary Table S6). Of the 190 differentially expressed
proteins identified by the ICAT approaches, 22 were predicted to
be secreted proteins (Supplementary Table $6). These proteins are
excellent candidates for investigation as diagnostic markers for
prostate cancer progression. The interesting point js that these
secreted diagnostic markers will serve as surrogates for the state
of the corresponding protein and gene regulatory networks and
potentially will enable one to {a) stratify disease into distinct
categories (e.g.. relatively benign, slowly invasive, and rapidiy
metastatic for prostate cancer), for these different types of
prostate cancer will employ different disease-perturbed networks);
(b} follow progression; (c) follow response to therapy; and (d)
monitor adverse drug reactions. The other interesting possibility
is that the perturbed secreted proteins will serve as markers to
identify the primary disease-perturbed networks and accordingly
will identify networks that may harbor excellent protein
candidates for drug targeting—drug targets that may kill disease
cells specifically or return the networks to a more normal state.

Interestingly, these two states of prostate cancer progression
can lead to “digital changes” (ie, changes from 0 to 250 tpm).
Thus, one can possibly obtain diagnostic markers that are digital
in the sense that they transition from no expression to some
expression. In the transition from LNCaP cells to CL1 cells, there
are 175 signatures (169 mRNAs) that go from 0 to =50 tpm.

Likewise, in going from CL1 cells to LNCaP cells, there are 131
signatures (128 mRNAs; Supplementary Table S$2). Among the
transcription factors we identified, eight transcription factors
changed from 0 tpm in LNCaP to >50 tpm in CLI cells and
seven transcription factors changed from >50 tpm in LNCaP
cells to 0 tpm in CLl cells (Supplementary Table $3). Eight
pathways were affected by the “digital changes” (Supplementary
Table §7). For example, acid ceramidase 1 and aspartate
aminotransferase changed from >50 tpm in LNCaP cells to 0
tpm in CLI cells, affecting multiple pathways, including the
insulin-like growth factor-l receptor pathway and activation of
COOH-terminal Stk kinase pathway (Supplementary Table S7).
It will be interesting to test these potential digital diagnostic
markers.

Our analyses provide an excellent database and powerful
resource enabling the development of tools for multivariable
diagnosis and prognosis. They represent a significant step toward
a system-wide understanding of prostate cancer progression. The
systems approach to disease will offer powerful to approaches to
diagnostics, therapeutics, and even prevention in the future {42),
It will almost certain usher in an era of predictive and preventive
medicine over the next 10 to 20 years (43).
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